VOLTAGE, CHARGE AND CURRENT

\[R = \frac{V}{I} \]
\[R \] is the resistance in ohms (\(\Omega \))
\[V \] is the voltage drop in volts (V)
\[I \] is the current in amps (A)

\[P = VI \]
\[P \] is power in watts (W)
\[V \] is voltage drop in volts (V)
\[I \] is current in amps (A)

\[\text{current (in amps)} = \frac{\text{charge transferred (in coulombs)}}{\text{time taken (in seconds)}} \]

Figure 1.1 Power supply arrangements for a typical electronic system.

\[f = \frac{1}{T} \]
\[f \] is the frequency in hertz (Hz)
\[T \] is the period in seconds (s)

Figure 1.2 Using a battery of four 1.5V cells to make a 6V d.c. supply.

Figure 1.3 Split supply rails: note the use of an earth connection to fix 0V.

Figure 1.5 A voltage–time graph for a typical mains alternating voltage.

Figure 1.7 Block and circuit diagrams for a simple smoothed power supply.

Figure 1.8 The i–V characteristic for a silicon diode.

Figure 1.11 The voltage at the anode of the diode goes both positive and negative.

Figure 1.12 The voltage at the cathode is only positive or zero.

Figure 1.9 There is a current in the diode when it is forward biased.

Figure 1.15 The voltage across the load fluctuates up and down as the capacitor charges and discharges.

\[V_r = \frac{I}{t} \]
\[V_r \] is the ripple voltage (V)
\[I \] is current in the load (A)
\[t \] is the period of the rectified signal (s)
\[C \] is the capacitance of the rectified capacitor (F)

\[V_0 = \sqrt{2} \times V_{\text{rms}} \]

Figure 1.10 The voltage at the anode of the diode is 5.2V.

Figure 1.13 The voltage at the cathode is 0V.

Figure 1.14 The current through the diode is 0A.

Figure 1.16 The voltage across the load is 5V.

Figure 1.17 The block diagram for a simple smoothed power supply.